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Crack propagation studies in brittle 
materials 

S. W. FREIMAN,  D. R. M U L V I L L E ,  P. W. M A S T  
Naval Research Laboratory, Washington DC, USA 

An analysis was made of cantilever beam specimens used for crack propagation studies. 
Included in this analysis were the effects of a plastic zone at the crack tip, beam rotation, 
and the viscoelastic response of the material. This analysis showed that application of a 
constant bending moment to the specimen rather than a constant load provides a test 
in which the strain energy release rate, N, is independent of crack length. Other advantages 
of this test configuration are that corrections for shear or beam rotation effects are not 
necessary. Results of this test on both glass and ceramics are reported. 

List of symbols 
a = crack length 
A = cross-sectional area of  beam 
b = total thickness of specimen 
d = deflection of loading arm 
E = elastic modulus of material 
E1 --- dynamic modulus 
E2 = transient response modulus 
G = shear modulus of material 
.~ = strain energy release rate 
~v~---s t ra in  energy release rate of visco- 

elastic material 
h = half height of specimen 
I = moment of inertia of cantilever beam = 

bh~/12 
k = modulus of elastic foundation 
K = stress intensity factor 
L = distance from point of load application 

to fulcrum of loading arm 
L' = distance from point at which arm deflec- 

tion is measured to fulcrum 
M = applied bending moment 
P = force applied to beam 
r = length of plastic zone 
t = thickness of  specimen at groove 
T = force applied to loading arm 
u = displacement of beam 
V = crack velocity 
w = half height of groove 
W -- stored elastic energy 
3 = characteristic length of beam on elastic 

foundation 
A = reciprocal of  the characteristic length of 

beam 

(~ 1973 Chapman and Hall Ltd. 

0 = rotation of beam 
X = viscoelastic creep compliance function 
r = time 
A = inherent opening distance as defined by 

Wnuk [10] 
ay = yield strength of material 
v = Poisson's ratio 

1. Introduction 
The strength of brittle materials is determined to 
a great extent by their resistance to crack 
propagation. The fracture strength is a function 
of a number of parameters including elastic 
modulus, flaw size and "fracture energy". The 
latter term is normally used to indicate the 
strain energy release rate, ~, needed to initiate 
fast fracture. Ceramics can fail, however, under 
stresses much less than which will cause im- 
mediate fracture, but which in combination with 
the environment can cause slow crack growth 
from existing surface flaws. Knowledge of both 
crack velocity and acceleration under a given 
loading can enable one to predict the lifetime of 
the material under stress. 

The tests most widely used in studies of stable 
crack propagation have been the double 
cantilever [1-3] and the double torsion [4, 5] 
although other configurations have been 
employed. Evans [6] has recently shown that 
application of constant deflection to a double 
torsion specimen can be an efficient method of 
obtaining crack propagation data. The double 
cantilever test is the most commonly used. 
Because of the great sensitivity of ceramics to 
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changes in strain energy release rate, fr a major 
disadvantage of this test is the fact that fr is 
dependent on crack length. Use of a correctly 
tapered sample [7] can solve this problem but 
the machining of these specimens is difficult. In 
the double torsion test, there is no dependence of 
fr on crack length but the test has the disadvan- 
tage that the crack shape is not geometrically 
simple. 

Contained in this paper is a general analysis 
employing beam theory and beam on an elastic 
foundation theory of cantilever beam specimens 
including the effects on f~ of a plastic zone at the 
crack tip, beam rotation ahead of the crack and 
a viscoelastic response of the material. An out- 
growth of this analysis is the conclusion that an 
especially efficient test configuration is one in 
which a constant bending moment  is applied to a 
double cantilever beam. Results of this test on 
glass and ceramics are presented. 

2. T h e o r y  
The analysis of  the double cantilever beam is 
based on the specimen configuration shown in 
Fig. 1. The purpose of the groove down the 
centre of  the specimen is to guide the crack. Its 
depth and width is designed to prevent the flow 
or fracture stress in the specimen arms f rom 
becoming critical. 

P 

P 

Figure 1 Schematic of double cantilever beam specimen. 

For the purpose of analysis, this specimen is 
assumed to be equivalent to that of  a semi- 
infinite beam on an elastic foundation as shown 
in Fig. 2. This beam can be analysed in three 
parts: the cantilever part  (x = 0 to a), the ideal 
plastic zone (x = a to a + r) and the portion 
analysed as a beam on elastic foundation ( x >  
a + r). When the crack extends or the plastic 

M( 
P 

I-~-- b.---~ 

T 
h 

~x T • 

Figure 2 Detailed schematic of cantilever beam as 
analysed in this study. 

zone grows, the change in the stored elastic 
energy in the specimen can be obtained as a sum 
of the energy changes in the three parts. The 
details of this analysis are given in the Appendix. 

These results can be summarized as follows*. 
I. Cantilever beam 

d W  1 [ EIP21 
d---a = 2---EI (M + Pa) 2 + GA J (t) 

2. Plastic zone 

dW 1 [ (  cr__~) 2 
dr - 2EI  M + P ( a + r ) -  (2) 

-}- ~-~ (P - ~yr) 2 

3. Beam on elastic foundation 

OW da OW 
d W = --~--~a + --~-r dr 

where 

W = 2-EI + + M"2 

and 

P '  = P - eyr (3) 

M ' =  M + P ( a  + r ) -  c~yr2 
2 

The general expression for the change in stored 
elastic energy is obtained by adding the results 
of  the three parts, i.e. Equations 1, 2 and 3. 

As an example of  the usefulness of  this 
analysis, consider the usual double cantilever 
test on a brittle material in which M = 0 and 
dr = 0. In this case Equation 2 also equals zero 
and Equations ! and 3 reduce to 

d W P2 ( EI  ~ ) 
da - 2EI a2 + ~ + + 2a~ �9 (4) 

*The change in stored energy with change in crack length represents the energy change due to both bending and shear. 
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The right hand side of Equation 4 contains a 
perfect square in a + 8 and can be written as 

- 2-E-I (a + 8) 2 +G--A " (5) 

The contribution owing to shear is EI/GA, 
while the contribution owing to rotation is a 
crack which appears longer than actually 
viewed, by the amount 8*. Taking t as the 
thickness of the beam at the crack tip the strain 
energy release rate for this configuration is given 
by 

( ~ ) d W  PZa2V( !)2 
d.  L \  1 + (6) 

+1~ 
Equation 6 is similar to expressions for f~ 
discussed by Gillis and Gilman [2] and Wieder- 
horn et al [3]. 

Using the fact that E =  4G(1 + v) for a 
beam, the coefficient of the shear term for 
v = 0.2 becomes (I + v)/3 = 0.40 compared to 
a commonly used value of 0.45 in [3]. 

If, however, only a moment, M, is applied to 
the double cantilever specimen (P and dr=0) ,  it 
follows from Equations 1 to 3 that a test can be 
devised which yields a much simpler expression 
for fr 

dW M 2 
d--a = 2EX (7) 

M 2 
= E~---t " (8) 

The significant aspects of this test are that ff is 
independent of crack length and plastic zone size 
(provided dr = 0). It is also seen that for this 
arrangement no contributions to f~ exist owing 
to either shear or beam rotations ahead of the 
crack. There are end effects, however, owing to 
the fact that the specimen is not a semi-infinite 
beam. When the crack reaches a distance 
approximately equal to 8 from the end of the 
specimen the test become invalid. Another 
advantage of this technique is its adaptability for 
the analysis of viscoelastic behaviour described 
in the Appendix. 

3. Experimental technique 
A shown in Fig. 3, a constant moment (TL) 

is achieved by applying a constant load to the 
ends of arms attached to the top of a double 
cantilever beam specimen. In most cases these 
arms are machined from metal so that the sample 
can be inserted into them and clamped into 
place. Whe~-e clamping is undesirable, arms can 
be affixed to the specimen with epoxy cement. 
Inserts in the arms keep the sample parallel to 
the loading plane during testing. By preparing a 
number of inserts for the arms, samples of 
different thicknesses can be tested. The inserts 
are clamped against the sample by means of a 
pointed screw extending through each arm. The 
arms are machined so that they can consistently 
be placed in the same position in the loading 
fixture. 

T d 

where M=TL 

SECTION 

TYPICAL DIMENSIONS-ram 

h - 6 . 0  
b-l.O 

P'I--2h ~ t -  0 5  
L -  19.0 

Figure 3 Specimen configuration employed in constant 
moment type test; loading arms are shown affixed to the 
top of the specimen. 

Fig 4 shows the arrangement of the sample in 
the loading fixture. The top portion of the 
fixture is hinged to allow the arms to open as the 
crack propagates. The triangular portion at the 
bottom assures that the load is divided equally 
between the two sides. The movable head is 
connected to the sample arms through wires 
attached to sleeves which slip over the arms. 
Springs placed in the load train reduce dis- 
turbances to the system. The sample is loaded 
through ball bearings in the sleeves which rest in 
dimples in the top of the arms. 

While dead weight loading can be used, a 
greater flexibility in test procedure may be 
achieved through the use of a closed loop 
loading system. In this case, the output voltage 

*This effect was first observed in adhesive joints by Charles Fowlkes of the Naval Research LaboratoIy in 1960. 
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Figure 4 Specimen arrangement in loading fixture. The 
fixture is in the closed loop test system. DCDT is to right 
of loading fixture. 

from the load cell is amplified and fed into an 
electrohydraulic servo controller of ram dis- 
placement*, By dialing in a given command 
voltage on a potentiometer, the desired load can 
be produced. The output of the load cell is also 
fed, after amplification and scaling into a digital 
voltmeter which allows the experimenter to 
directly observe the load on the sample. 

Crack velocities can be determined in two 
ways, either by visual observation in a travelling 
microscope or by measurement of the compliance 
change in the arms as the crack propagates. In the 
latter case, the deflection, d, of an arm as shown 
in Fig. 3, is measured using a DCDT?,  whose 
output voltage has been amplified and fed into a 
chart recorder. For most materials, deflection is 
measured in micro-inches, making it necessary 

*Moog Inc. 
"~Direct current differential transformer. 
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to amplify the output from the DCDT by 100 in 
order to see small changes in d. Crack velocity 
can then be determined from the plot of d versus 
time through Equation 9, which is obtained from 
the geometry and compliance of the system. 

E1 
a = ~-~, d (9) 

4. Test procedure and results 
Since the primary purpose of  this paper is to 
describe a test procedure, only selected results o f  
tests performed on soda-lime-silica glass and 
alumina are presented to show the effectiveness 
of the technique. Normal glass microscope 
slides or alumina plates were used as test 
specimens. These were cut to have the approxi- 
mate dimensions shown in Fig. 3. A crack was 
initiated in the groove by tightening a sharpened 
screw against the ungrooved side. The specimen 
was then inserted into the loading arms and the 
load applied. Values of T up to 800 g were 
required for the glass specimens, while loads of up 
to 2000 g were used for the alumina. Crack 
lengths were measured for the most part with a 
travelling microscope having an accuracy of  
+ 0.0005 mm, although some use was made of  
the compliance technique. A number of different 
constant f~ tests were obtained on the same 
specimen by stepping the load appropriately. 

All measurements of specimen geometry were 
made after the crack had progressed completely 
through the sample. Determinations of W, h, 
and t, were made at a number of points in the 
crack path using the travelling microscope. It 
was necessary to take into account the presence 
of  the groove in order to obtain ,an accurate 
value of moment of inertia. An average value of  
I for each side of the specimen was used in the 
calculation of f~. 

Typical plots of crack length versus time are 
shown in Fig. 5. The slope of these curves is the 
crack velocity at each fr It can be seen that this 
velocity is independent of  crack length as would 
be expected for glass under these loading con- 
ditions. Crack velocities determined by the 
compliance technique agreed within + 10 ~ of  
those obtained visually. 

Fig. 6 shows a plot of Kversus log velocity for 
soda-lime-silica glass in three different environ- 
ments, where K is the stress intensity factor for 
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Figure 5 Crack length as a function of time in soda-lime- 
silica glass at various levels of strain energy release rate. 

plane stress, K = ~/(NE). Because of the small 
changes in N or K in relation to the changes in 
velocity, both semi-log and log-log plots give 
similar curves. As can be seen from the data 
taken in octanol, the relationship between K and 
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Figure 6 Crack velocity as a function of stress intensity fac- 
tor for soda-lime-silica glass in different liquid environ- 
ments. Comparison of data taken in distilled H20 is 
made with that reported by Evans [6] and Wiederhorn 
[8] using different techniques. 

velocity need not be simple, but depends on the 
test material and environment. As shown, 
similar results are obtained using a conventional 
double cantilever arrangement [8] or through the 
use of a double-torsion specimen loaded in a 
constant deflection mode [6]. 

The data for AI20 a shown in Fig. 7 was more 
scattered possibly because of the greater 
inhomogeneity of polycrystalline material com- 
pared to glass. In many instances cracks were 
observed to decelerate or accelerate at a constant 
N, suggesting that dV/dt terms may be important 
in the analysis of crack growth. 
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Figure 7 K-velocity relationship for a commercial alumina 
in air at 22~ 50% r.h. 

5. Summary 
A general analysis of crack growth in double 
cantilever beams using beam and beam on 
elastic foundation theory was presented, in which 
contributions to strain energy release rate owing 
to plastic deformation, shear, and other defor- 
mations are considered. It was observed from the 
expressions for N obtained in this analysis, that a 
simple test results if a constant bending moment 
is applied to the beam. In this configuration, ~ is 
independent of crack length and plastic zone 
size (provided dr = 0) and contributions to 
owing to shear or rotations ahead of the crack 
are zero. 

Results of investigations on soda-lime-silica 
glass and AI~O3 showed the above technique to 
be effective in obtaining the relationship 
between N (or K) and crack velocity. It was also 
shown that crack velocities could be accurately 
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determined by either a visual observation or Shear. 
measurement of  compliance changes in the dr 
loading system, dw = ~ (P - cryr) 2 (A6} 

Appendix so 

s p e c i m e n s  dr - 2-E-I M + P(a + r) -- cr----~ 2 (A7) 
This analysis is based on the specimen con- 
figuration shown in Figs. A 1 and A2. For analysis E1 ) 

-~ ~ (P - cryr)~ 

P P 

P P 
WHERE M' = M + Po 

Figure A1 Detailed schematic drawing of cantilever beam 
portion of specimen. 

p O'y p' 

p' p' 

WHERE P'= P-o-yr  ~ rz 

M " = M + P ( a + r ) -  2 

Figure 12 Detailed schematic drawing of plastic zone 
portion of specimen. 

purposes, the specimen is divided into three 
parts. 

1. Cantilever Beam 
Bending. 

da 
dw = 2-E-I (M')2 

da 
- 2 E I  ( M  + Pa)  ~ 

Shear. 

(A1) 

(A2) 

p 2  

dw = ~---A da (A3) 

The total change in stored elastic energy is 

d--adW 2-EI1 [ EIP21..j = (M + Pa) 2 + -G-A-/ (14) 

2. Plastic zone 
Bending. 
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q dw = ~ - I  M + P(a + r)-- (15) 

M 

P 

O ~  =-x 

Figure 13 Deflection of beam on elastic foundation (after 
Hetenyi [9]). 

3. Beam on elastic foundation (see Figs. 2 and 
A3) 

tE 
web modulus = k = - -  

W 

From beam on elastic foundation theory [9] 

d~u k 
dx ---4 -}- E-I u = 0 .  (A8) 

The characteristic roots for this equation are 

1 k 
~t4 = ~4 = 4--EI (A9) 

where 8 is the characteristic length of the beam. 
The total energy is given by one half the 

product of the loads and moments times the 
displacements and rotations of  the beam 

W =  l /2 I  } I  (A10) 

where P' and M" are defined in Fig. A2. 
From Hetenyi [9 ] the deflections and rotations 

of a semi-infinite beam on an elastic foundation 
can be given in matrix form as 
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Substituting for { ; }  in A10 

Performing the matrix multiplication 

and 

(112) 

3 V82P '2 8M"P' ] 
W = ~-~iL---2-- + + M "~ (A13) 

~W 0W 
d W =  ~ d a +  ~ d r .  (A14) 

Under most test conditions, some of the para- 
meters in Equation A13 will vanish so that a 
relatively simple expression for W will be 
obtained. 

The total change in elastic energy with an 
increase in crack and/or plastic zone size is 
given by a combination of Equations A4, A6, 
A13 and A14. 

Linear viscoelastic materials can also be 
analysed, by using expressions derived by Wnuk 
[10]. The viscoelastic displacement in the 
vicinity of the tip of a slowly moving crack is 
the product of  the elastic displacement and the 
compliance function ~b(A/V). Using this result 
in the analysis of the cantilever beam specimen, 
the displacement owing to bending becomes 

d u v i s e o e l a s t i e  = d u e l a s t i e  ~(~/g) (A15) 
M' ada 

- E I  ~ ( ~ / V )  

and the change in stored energy is 

1 M'2da 
d W =  ~ M ' d O -  2EI ~b(A/V). (A16) 

Similarly, the displacement owing to shear 
becomes 

duviseoeiastie = dUelastie ~(A /V)  (A17) 

Pda 
AG ds(A/V) 

and the change in stored energy is 

1 PMa 
d W  = ~ Pda = "2A--G ~(A/V)"  (118) 

Consequently, in Equation A19, the ffviseo- 
elastic is obtained from ~elasfie by forming the 
product with the compliance function ~b(A/V). 
Applying this analysis to the double cantilever 
specimen, the strain energy release rate to 
propagate a crack becomes 

~r = ~r q,( AIV)  (A19) 
where for the standard linear model, 

~b(A/V)- -  1 + ~ 1 - exp (A20) 

and N was obtained using the previously dis- 
cussed techniques. 
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